Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series LLC LTD Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series LLC LTD : World’s leading Event Organizer

Back

4th International congress on Infectious Diseases

Barcelona, Spain

Yifat Ofir-Birin

Yifat Ofir-Birin

Weizmann Institute of Science, Israel

Title: Cell-cell communication between Plasmodium and host immune via exosomes

Biography

Biography: Yifat Ofir-Birin

Abstract

Malaria, kills up to a million people each year, is caused by the protozoa of the genus Plasmodium falciparum (Pf). These vector-born parasites cycle between mosquitoes and humans and, in both contexts, are faced with an unstable and hostile environment. To ensure survival and transmission, the malaria parasite must infect and survive in the human host and differentiate into sexual forms that are competent for transmission to mosquitoes. We found for the first time that Pf-infected red blood cells (iRBCs) directly exchange cargo between them using nano-vesicles (exosomes). These tiny vesicles are capable of delivering protected genes to target cells. Cell-cell communication is a critically important mechanism for information exchange that promotes cell survival. How Pf parasites sense their host environment and coordinate their actions remain one of the greatest mysteries in malaria. Moreover, our understanding in the mechanism regulate human immune response to malaria infection is poor. Here, we found that malaria-derived exosomes carry remarkable cargo providing a secure and efficient mode for signal delivery. We developed an exosomes tracking assay and could measure Pf exosomes uptake by different cell types. Moreover, although early life-stages of Pf-iRBC are considered immunologically inert, our initial observations show that ring-stage derived exosomes are immunogenic. We show that exosomes can specifically activate and induce pro-inflammatory responses, resulting in interferon type I response. This is a new area of malaria research which may shed a light on the ability of malaria parasite to manipulate their host response.